The Role of Phosphites in Scab Management and Residues in Pecan Kernels

Clive H. Bock and Tim B. Brenneman

USDA-ARS Southeast Fruit and Tree Nut Research Laboratory, Byron, GA,
University of Georgia, Tifton, GA
Phosphites (H_2PO_3^-) are salts of phosphorous acid [HPO(OH)$_2$]

- Not a phosphate (HPO_4^{2-}), which are important in plant nutrition
- The phosphite ion (H_2PO_3^-) is readily absorbed in plants
- Phosphite travels systemically in both the xylem and phloem
- Formulated with a cation (most often an alkali metal, Na, K, Al, NH$_4$) and is sold both in fungicide and nutritional packages for use in agriculture

What is phosphite?

Phosphite ion H_2PO_3^-
Claims of nutritional benefits of phosphites should be approached with caution

- No evidence for direct benefit of phosphites to crop health (no studies performed on pecan to date)
- But data demonstrating no or adverse effects exists from other crops:
 - If phosphate is adequate, additional phosphate or phosphite has no effect
 - If plants are phosphate deficient, additional phosphate benefits dry matter accumulation, but phosphite retards it

Thao and Yamakawa, 2010

Table 4: Influence of different P fertilization treatments on the dry matter yield of maize plants [g DM per plant] (FV4, Braunschweig 2004)

<table>
<thead>
<tr>
<th>Soil P fertilization</th>
<th>Foliar P fertilization</th>
<th>Plant dry matter [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without</td>
<td>Phosphate¹</td>
</tr>
<tr>
<td>P deficiency</td>
<td>35 ab</td>
<td>45 b</td>
</tr>
<tr>
<td>P sufficiency</td>
<td>45 a</td>
<td>45 a</td>
</tr>
</tbody>
</table>

¹ one-time 15 mg P as 0.2 % w/v KH₂PO₄ solution
² one-time 15 mg P as 0.2 % w/v KH₂PO₄ solution
All values are means of five replicates. Means followed by dissimilar letters in rows are significantly different (Duncan’s test, P = 0.05).

The phosphate levels 0.05, 0.1, 0.15 and 0.3 mmol l⁻¹ were phosphate supplies for 50, 80, 90 and 100% of maximum plant growth, respectively.

Error bars are standard error (n = 3).

***P < 0.001.

Different letters indicate significant differences between means within the same phosphate supply by least significant difference tests (P < 0.05).
Mode of action

- 1 - Direct toxicity to fungus: demonstrated that it is directly toxic to many pathogens at the rates applied in the field (but does not explain the full level of control witnessed in field situations)

- 2 - Phosphites have been demonstrated to enhance the plants natural defense through a mechanism called systemically acquired resistance (SAR)
 - SAR are broad-spectrum plant defense responses that can be induced biologically by challenging a plant with an attenuated pathogen or chemical

The effect of phosphite (P) and triphenyltin hydroxide (T) on growth of *Venturia effusa* in-vitro.

The fungus was grown in potato dextrose broth amended with ProPhyt (a.i. phosphite) or Super Tin 4L (a.i. TPTH) at different concentrations: 0, 0.05x, 0.25x, 0.5x, 1x, 2x as the factor of the recommended rate of the fungicide where 1x = 2.64 L 1000 L⁻¹ for ProPhyt and 0.90 L 1000 L⁻¹ for Super Tin 4L. Means comparisons are based on Tukey’s test: numbers with different letter are significantly different (P=0.05).

![Graph](image)

Fig. 2 Phytoalexins accumulation after *P. infestans* infection in tuber slices obtained from KPhi-treated or control plants. Phytoalexins were measured seven days after inoculation with *P. infestans*.

Control of pecan scab with phosphites

- Pecan scab, caused by *Venturia effusa* is the most important disease of pecan
- Several fungicides are used to manage the disease, including organotins, DMIs, MBCs, QoIs and Ziram (unfortunately resistance to some of these is a reality)
- Recently, phosphites were demonstrated to provide good control of pecan scab
Phosphites are effective fungicides against pecan scab on foliage

- In multiple experiments across the Southeast, phosphites have been shown to effectively reduce scab on foliage when compared to other industry standard fungicides.

Fungicide treatments: Potassium phosphite (Prophyt, 36 fl oz/100 gallons) or triphynl tin hydroxide (TPTH) (Super Tin 4L, 12 fl oz/100 gallons). Applications made biweekly. Prepollination - end of July.

- Scab severity assessed visually on foliage. Data was analyzed using General linear modeling with Tukey’s means separation (P = 0.05).
Phosphites are effective fungicides against pecan scab on foliage

Further studies demonstrating efficacy on foliage:

Tifton, GA, 2010

Scab severity (percent area infected)

<table>
<thead>
<tr>
<th></th>
<th>Wichita</th>
<th>Cherokee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>a</td>
<td>z</td>
</tr>
<tr>
<td>ProPhyt (1X)</td>
<td>b</td>
<td>y</td>
</tr>
<tr>
<td>ProPhyt (2X)</td>
<td>a</td>
<td>z</td>
</tr>
<tr>
<td>Super Tin 4L</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

Raymond, MS, 2010

Scab severity (percent area infected)

<table>
<thead>
<tr>
<th></th>
<th>untreated</th>
<th>Orbit 4 oz (1-5)</th>
<th>ProPhyt 2.5 pt (1-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>ProPhyt 2.5 pt</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Stillwater, OK, 2010

Scab severity (area under the disease progress curve)

<table>
<thead>
<tr>
<th></th>
<th>NTC</th>
<th>LBG-61</th>
<th>ProPhyt</th>
<th>Late-strobilurin</th>
<th>Stratego</th>
<th>Early-strobilurin</th>
<th>Quilt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>Orbit 4 oz</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>ProPhyt 2.5 pt</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Fungicide treatments (6 applications): Potassium phosphite (ProPhyt, 36 fl oz/100 gallons) or triphyl tin hydroxide (TPTH) (Super Tin 4L, 12 fl oz/100 gallons): Applications made biweekly. Prepollination - end of July

Scab severity assessed visually on foliage. Data was analyzed using General linear modeling with Tukey’s means separation (P = 0.05)

Fungicide treatments (5 applications): Orbit 4 oz (1-5), ProPhyt 2.5 pt (1-5), LBG-61 2 pt (1-5)

Scab severity assessed visually. Data was analyzed using ANOVA with means separation an LSD test (P = 0.05).

Fungicide treatments (6 applications):

NTC = Non-treated control.

LBG-61: 1 = Quilt 1.66SC 27.5 oz, 2-5 = LBG-61 F 32.0 oz, 6 = Enable 2F 8.0 oz

ProPhyt: 1 = Quilt 1.66SC 27.5 oz, 2-5 = ProPhyt F 40.0 oz, 6 = ProPhyt F 40.0 oz + Elast 400F 25.0 oz

Late strobilurin: 1 = Folicur 3.6F 8.0 oz, 2, 4 = Enable 2F 8.0 oz, 3, 6 = Topsin 4.5FL 20.0 oz + Headline 2.09EC 7.0 oz

Stratego: 1, 3, 5 = Stratego 2.08EC 10.0 oz, 2, 4, 6 = Topsin 4.5FL 20.0 oz

Early strobilurin: 1, 5 = Headline 2.09 EC 7.0 oz, 2, 4 = Topsin 4.5FL 20.0 oz, 3 = Abound 2.08EC 12.3 oz, 6 = Enable 2F 8.0 oz

Quilt: 1, 3, 5 = Quilt 1.66SC 27.5 oz, 2, 4, 6 = Topsin 4.5FL 20.0 oz

Scab severity assessed visually. Data was analyzed using ANOVA with means separation using Fishers protected LSD test (P = 0.05).

Phosphites are effective fungicides against pecan scab on developing fruit

- In multiple experiments across the Southeast, phosphites have been shown to effectively reduce scab on fruit when compared to other industry standard fungicides.

- Phosphite and TPTH applied to Apache, Desirable and Wichita.
- Randomized complete block design. Non-treated control, potassium phosphite (Prophyt, 36 fl oz/100 gallons) or TPTH (Super Tin 4L, 12 fl oz/100 gallons). Applications made biweekly. Prepollination - end of July.
- Scab severity assessed visually twice on fruit.
- Data was analyzed using General linear modeling with Tukey’s means separation (P = 0.05).

Phosphites are effective fungicides against pecan scab on developing fruit

- Further studies demonstrating efficacy on fruit:

- Fungicide treatments (6 applications): Potassium phosphite (ProPhyt, 36 fl oz/100 gallons) or triphényl tin hydroxide (TPTH) (Super Tin 4L, 12 fl oz/100 gallons): Applications made biweekly.

- Scab severity assessed visually. Data was analyzed using General linear modeling with Tukey’s means separation (P = 0.05).

- Fungicide treatments (5 applications): Orbit 4 oz (1-5), ProPhyt 2.5 pt (1-5), LBG-61 2 pt (1-5)

- Scab severity assessed visually. Data was analyzed using ANOVA with means separation an LSD test (P = 0.05).

- Fungicide treatments (6 applications): NTC = Non-treated control.
 LBG-61: 1 = Quilt 1.66SC 27.5 oz, 2-5 = LBG-61 F 32.0 oz, 6 = Enable 2F 8.0 oz
 ProPhyt: 1 = Quilt 1.66SC 27.5 oz, 2-5 = ProPhyt F 40.0 oz, 6 = ProPhyt F 40.0 oz + Elast 40OF 25.0 oz
 Late strobilurin: 1 = Folicur 3.6F 8.0 oz, 2, 4 = Enable 2F 8.0 oz, 3, 6 = Tonsin 4.5FL 20.0 oz, 5 = Headline 2.09EC 7.0 oz
 Stratego: 1, 5 = Stratego 2.08EC 10.0 oz, 2, 4 = Tonsin 4.5FL 20.0 oz
 Early strobilurin: 1, 5 = Tonsin 4.5FL 20.0 oz, 2, 4 = Abound 2.08EC 12.3 oz, 6 = Enable 2F 8.0 oz
 Quilt: 1, 5 = Quilt 1.66SC 27.5 oz, 2, 4, 6 = Tonsin 4.5FL 20.0 oz

- Scab severity assessed visually. Data was analyzed using ANOVA with means separation using Fishers protected LSD test (P = 0.05).

How are phosphites used in the pecan industry?

- Phosphites are applied as both single application treatments and tank mixes.
- There is much information we do not have, but current usage recommendations are:

| phosphorus acid | 33 | 2.5 pt | 2.3 pt | 2 pt | 4 pt | 4 H/ -- | For best control apply in 100 gpa by ground. DO NOT apply in consecutive applications. The phosphate (phosphorous acid-based) fungicides listed are EPA approved and considered to be very safe products. However, there is currently an unresolved issue regarding potential residues of these products in tree nuts exported to the EU. This affects only nuts exported to the EU, but growers who know their crop is going to that market may want to consider not using phosphate fungicides if this issue is resolved. Check labels for potential limitations on maximum number of applications or amount of active ingredient allowed per season.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ProPhyt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FungiPhite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phosphorus acid + tebuconazole</td>
<td>33</td>
<td>2-2.5 pt</td>
<td></td>
<td></td>
<td></td>
<td>12 H/ 0 D</td>
<td></td>
</tr>
<tr>
<td>Viathon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Prepollination applications (every 10-14 days from bud-break to nut-set)

| phosphorus acid | 33 | 2.5 pt | 2.3 pt | 2 pt | 4 pt | 4 H/ -- | For best control apply in 100 gpa by ground. DO NOT apply in consecutive applications. The phosphate (phosphorous acid-based) fungicides listed are EPA approved and considered to be very safe products. However, there is currently an unresolved issue regarding potential residues of these products in tree nuts exported to the EU. This affects only nuts exported to the EU, but growers who know their crop is going to that market may want to consider not using phosphate fungicides if this issue is resolved. Check labels for potential limitations on maximum number of applications or amount of active ingredient allowed per season.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ProPhyt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FungiPhite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phosphorus acid + tebuconazole</td>
<td>33</td>
<td>2-2.5 pt</td>
<td></td>
<td></td>
<td></td>
<td>12 H/ 0 D</td>
<td></td>
</tr>
<tr>
<td>Viathon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Postpollination applications (every 10-21 days from nut-set to shell hardening)

| phosphorus acid | 33 | 2.5 pt | 2.3 pt | 2 pt | 4 pt | 4 H/ -- | For best control apply in 100 gpa by ground. DO NOT apply in consecutive applications. The phosphate (phosphorous acid-based) fungicides listed are EPA approved and considered to be very safe products. However, there is currently an unresolved issue regarding potential residues of these products in tree nuts exported to the EU. This affects only nuts exported to the EU, but growers who know their crop is going to that market may want to consider not using phosphate fungicides if this issue is resolved. Check labels for potential limitations on maximum number of applications or amount of active ingredient allowed per season.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ProPhyt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FungiPhite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phosphorus acid + tebuconazole</td>
<td>33</td>
<td>2-2.5 pt</td>
<td></td>
<td></td>
<td></td>
<td>12 H/ 0 D</td>
<td></td>
</tr>
<tr>
<td>Viathon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How are phosphites used in the pecan industry?

- Most labels state that there is no limit to the number of applications applied per season, although some labels do specify minimum volumes and also minimum time periods before reapplying the product.
- Some growers do not use phosphites.
- But many growers apply from one to as many as 10 sprays of phosphite per season (either as single sprays, tank mixes, or a combination – often at ~1Q rate).

<table>
<thead>
<tr>
<th>Orchard</th>
<th>Total sprays</th>
<th>Number that contain phosphite</th>
<th>% of sprays with phosphite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>4</td>
<td>25%</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>7</td>
<td>58%</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>6</td>
<td>43%</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>1</td>
<td>8%</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>8</td>
<td>33%</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>10</td>
<td>63%</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>9</td>
<td>60%</td>
</tr>
</tbody>
</table>

Frequency of number of sprays of phosphite applied (data from seven different growers spraying 20 orchards)
Advantages/disadvantages of phosphites

- They have low toxicity. The EPA has four toxicity ratings. Phosphite salts fell into categories III and IV, depending on toxicity test (oral, dermal, inhalation, ocular).
 - Toxicity category III is slightly toxic and slightly irritating
 - Toxicity category IV is practically non-toxic and not an irritant
- Apparently not harmful to the environment (used in Australia to control a disease of Eucalyptus forests ‘Jarrah’)
- They are effective fungicides/oomycicides
- Cases of field resistance to phosphites are rare
 - *Bremia lactucae* (lettuce downy mildew) in CA and *Phytophthora cinnamomi* (Jarrah dieback) in Australia, both oomycetes
 - Risk factors for resistance include repeated use of phosphite-containing fungicides/fertilizers
- They might cause phosphite-induced phosphorous deficiency
- They have potential to be phytotoxic (also reports of delayed shuck-split)
- Phosphite application can result in residues in harvested crop products (such as pecan nutmeats)

Residues, MRLs, EU rulings and other nut crops in relation to pecan

- In 2013 the EU changed the designation of phosphites as both fertilizer and pesticide to only pesticide, thus defaulting phosphites to a 2 ppm MRL.
- They provided a temporary MRL of 75 ppm to nut and other crops to 31 December 2015 to allow time for producer industries to respond.
- In September 2015, the US tree nut industry submitted a package based on IR-4 phosphite residue testing (*which did not include pecan data*) for the EU to determine a final import tolerance to replace the temporary MRL.
- The temporary MRL was extended on other nut crops (*which did not include pecan*) until 1 March 2019 (announced January 2016). The permanent MRL for nut crops is to be decided before that date.
- Pecan is likely to be included in the permanent MRL, but in the meantime the level for pecan has defaulted to 2 ppm.
- Thus it has become expedient to obtain a temporary MRL for pecan to allow exports to the EU (valued at US $138,314,000).
- We need to obtain some residue data for pecan to achieve this goal.
Exports of pecans to the EU

- Valuable export market
- Increasing in size as a market for pecans
Method used to test for residues of phosphite by the EU

- Quick method for the analysis of numerous highly polar pesticides (QuPPe-method)
- Liquid Chromatography coupled with Mass Spectroscopy

- Accurate testing for phosphites is not trivial
- Specialized equipment is required, it is expensive and only a few labs have it
- Highly trained and skilled personnel are needed to operate the equipment
- Commercially, each sample costs ~US$ 250
- There are other less expensive methods, but they could be questioned by the EU due to potential inaccuracies
- The following data is based on tests performed by a commercial laboratory using LC-MS (Eurofins)
- Collected preliminary samples in the fall of 2015 in Tifton and Byron, GA
Residues detected in samples of pecan

Samples from 2015

<table>
<thead>
<tr>
<th>Test</th>
<th>Location</th>
<th>Product</th>
<th>Exposure – rate and number of applications</th>
<th>Total exposure</th>
<th>EUROFIN Total detected (mg/kg)</th>
<th>UC – Davis Total detected (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tifton 1</td>
<td></td>
<td>0 pts, 0 x</td>
<td>0 pt</td>
<td>Not detected</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Byron 1</td>
<td></td>
<td>0 pts, 0 x</td>
<td>0 pt</td>
<td>7.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Albany 1</td>
<td>Phostrol</td>
<td>2 pts, 3 x</td>
<td>6 pt</td>
<td>44.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Byron 1</td>
<td>Prophyt</td>
<td>2 pts, 5 x</td>
<td>10 pt</td>
<td>15.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tifton 1</td>
<td>Prophyt</td>
<td>4 pts, 5 x</td>
<td>20 pt</td>
<td>78.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tifton 1</td>
<td>Rampart</td>
<td>6 pts, 5 x</td>
<td>30 pt</td>
<td>296.0</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Byron 1</td>
<td></td>
<td>0 pts, 0 x</td>
<td>0 pt</td>
<td>-a</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>Byron 1</td>
<td>Prophyt</td>
<td>4.5 pts, 5 x</td>
<td>22.5 pt</td>
<td>-</td>
<td>108.0</td>
</tr>
<tr>
<td></td>
<td>Byron 1</td>
<td>Prophyt</td>
<td>6 pts, 5 x</td>
<td>30 pt</td>
<td>-</td>
<td>80.6</td>
</tr>
</tbody>
</table>

- Not tested

- Most programs had >2 ppm
- Some had >75 ppm
- Even some pecan crops receiving no phosphite had detectable residue
A linear relationship was observed between total number of pints of phosphite applied and phosphite residue based on preliminary data.

\[
y = 4.7x - 3.2 \\
R^2 = 0.69
\]

Samples from 2015

- Temporary MRL was 75 ppm
- Default MRL is 2 ppm

Number of pints phosphite product

Phosphorous acid residue (ppm)
Status of knowledge and recent sampling

- **Status:**
 - Phosphite residues are readily detectable in pecan (at levels >75 ppm)
 - There is no directly transferrable information from other crops, and we don’t know if the “nut-crop group” MRL will be realistic for pecans
 - Even when a nut group MRL is granted, use of phosphites will need to be managed to ensure residues <MRL (spray frequency, timing etc)
 - Phosphites are a vital chemistry for the industry
 - The pecan industry is currently pursuing a temporary MRL, which is being spearheaded by Dr. Randy Hudson and Dr. Tim Brenneman

- **Sampling:**
 - In 2016, samples (~300) were obtained from growers orchards to provide base-line data on residue levels (Drs. Rohla (Noble Foundation, Ardmore), Brenneman (University of Georgia, Tifton), and Bock (USDA-ARS-SEFTNRL, Byron))
 - The samples will be processed and phosphite levels determined using the appropriate methods. The Noble Foundation is instrumental in this task
 - Field experiments (2016 and onwards) are being designed to investigate effects of different usage patterns on residues as a basis for recommendations
 - Data will be compiled and interpreted by the researchers, and provided to the industry for approaching the EU, and possibly IR-4 for further tests if required
Preliminary results of phosphite residue testing in relation to number and timing of sprays - 2016

- Experiment at ARS-SEFTNRL, Byron, GA, in 2016, cv. Pawnee
- Applied Prophyt (3 pt/100 G/acre) following two different protocols

 i) 1 to 5 applications additively (1, 2, 3, 4 or 5 sprays)
 - No spray
 - 15-Jul (1 spray)
 - 15, 28-Jul (2 sprays)
 - 15, 28-Jul, 15-Aug (3 sprays)
 - 15, 28-Jul, 15, 30-Aug (4 sprays)
 - 15, 28-Jul, 15, 30-Aug, 9-Sep (5 sprays)

 ii) 1 spray applied at each of 5 spray dates (only 1 application, but on different dates)
 - No spray
 - 15-Jul (1 spray)
 - 28-Jul (1 spray)
 - 15-Aug (1 spray)
 - 30-Aug (1 spray)
 - 9-Sep (1 spray)

- Only two trees of each treatment – so based on limited data
Preliminary results of phosphite residues in relation to number and timing of sprays

- Profound effects of number of sprays and spray timing on the residue levels of phosphite
 - A. There was an almost additive increase in phosphite residue with each spray
 - B. Later sprays applications resulted in greater residue
- Even the control exceeded the EU MRL of 2 ppm
Phosphites are a valuable chemistry to pecan production

- Particularly efficacious against scab on foliage and also fruit
- Needed as a tool for managing resistance to fungicides in the scab pathogen
- Reducing impact of other diseases in addition to scab (e.g. anthracnose, Phytophthora). Phosphites are broad spectrum fungicides – they can control several different diseases
- Phosphites are a safe and environmentally friendly fungicide compared to many others. Particularly important as the world becomes less tolerant of less safe or environmentally harmful pesticides
- These needs require that we establish acceptable use procedures for phosphites in pecan where nuts are exported to the EU
- And we need data to ensure realistic MRLs are granted by the EU for pecan
Any application of phosphite will exceed 2 ppm. Just a few sprays can result in >75 ppm

As long as the 2 ppm ruling is in place, growers choosing to export to the EU should avoid using phosphites

Even if a nut group MRL is granted, use of phosphites will need to be managed in a manner to ensure EU-bound nuts have residues that do not exceed this value

Phosphite spray timing and frequency used by growers will be critical, and dependent on the final MRL ratified by the EU

We need to determine:

- How spray frequency/concentration/timing affects phosphite residue in nuts
- Whether there is season to season carry over of phosphites in pecan trees (could become cumulative over years)
- Cultivar/environment effects
Acknowledgements

- We thank Dr. Mike Hotchkiss, Wanda Evans, Sue Burrell, Jason Shipp, Kaylee Carlson, Melissa Steinhauer, Emma Cutchens, Keith Hough, Tucker Ellis, and Shad Stormant at the USDA-ARS for technical assistance with sampling, assessments and processing

- We are grateful to several growers for providing information on spray applications

- Funding from the GA Commodity Commission for Pecans contributed to some of the research results described

- We also appreciate manufacturers of various phosphite products for providing material for testing purposes
Thank you!