Update on Phosphite Residues in Pecan

Clive H. Bock and Tim B. Brenneman

USDA-ARS-SEFTNRL, Byron, GA
University of Georgia, Tifton, GA
Pecan scab (Venturia effusa)

- Can cause 100% yield loss in susceptible cultivars
- Lifecycle of *V. effusa*
- Rain drives epidemic

Lifecycle

- **Spring**
 - Epidemics build up on young leaves (conidia)

- **Summer**
 - Polycyclic pathogen (rain and wind)
 - Epidemics build up on fruit (conidia)

- **Autumn**
 - Fungus becomes dormant as stroma and overwintering conidia (twigs and shucks)
 - Reduction in number of fruit due to abortion
 - Reduction in fruit size and nut quality

- **Winter**
 - Overwinters as stroma and conidia
Phosphite fungicides

What is phosphite?

- Phosphites \((\text{H}_2\text{PO}_3^-) \) (phosphonates) are salts of phosphorous acid \([\text{HPO(OH)}_2]\)
- Not a phosphate \((\text{HPO}_4^{2-}) \), which are important in plant nutrition
- The phosphite ion \((\text{H}_2\text{PO}_3^-) \) is readily absorbed in plants
- Phosphite travels systemically in both the xylem and phloem
- Formulated with a cation (most often an alkali metal, Na, K, Al, NH\(_4\)) and is sold both in fungicide and nutritional packages for use in agriculture
Phosphites are effective on foliage

- In multiple experiments phosphites have been shown to effectively reduce scab on foliage when compared to other industry standard fungicides.
- But generally results were less efficacious on fruits at the low rates initially recommended.

Fungicide treatments: Potassium phosphite (Prophyt, 36 fl oz/100 gallons) or triphynl tin hydroxide (TPTH) (Super Tin 4L, 12 fl oz/100 gallons).

Applications made biweekly. Prepollination - end of July.

Scab severity assessed visually on foliage. Data was analyzed using General linear modeling with Tukey’s means separation (P = 0.05)

Fungicide treatments (5 applications): Orbit 4 oz (1-5), Prophyt 2.5 pt (1-5), LBG-61 2 pt (1-5)

Scab severity assessed visually. Data was analyzed using ANOVA with means separation an LSD test (P = 0.05).
Phosphite usage: recommendations

- Phosphites are applied as both single chemistry applications and tank mixes.
- There is much information we do not have, but current usage recommendations are:

 - **Prepollination** applications (every 10-14 days from bud-break to nut-set)

<table>
<thead>
<tr>
<th>Phosphorous acid</th>
<th>33</th>
<th>2-5 pt</th>
<th>4 H/ -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phostrol</td>
<td>2-3 pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProPhyt</td>
<td>2-3 pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FungiPhite</td>
<td>2-3 pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliant</td>
<td>4 pt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See info below: MOA Group 33.

<table>
<thead>
<tr>
<th>Phosphorous acid + tebuconazole</th>
<th>33 + 3</th>
<th>2-2.5 pt</th>
<th>12 H/ 0 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viathon</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See info below: MOA Group 33.

 - **Postpollination** applications (every 10-21 days from nut-set to shell hardening)

<table>
<thead>
<tr>
<th>Phosphorous acid</th>
<th>33</th>
<th>2-5 pt</th>
<th>4 H/ -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phostrol</td>
<td>2-3 pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProPhyt</td>
<td>2-3 pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viathon</td>
<td>2 pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FungiPhite</td>
<td>2-3 pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliant</td>
<td>4 pt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See info below: MOA Group 33.

<table>
<thead>
<tr>
<th>Phosphorous acid + tebuconazole</th>
<th>33 + 3</th>
<th>2-2.5 pt</th>
<th>12 H/ 0 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viathon</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOA Group 33: Resistance risk is low. For best control apply in 100 gpa by ground. Do not apply in consecutive applications. Three to five applications are generally recommended. Check labels for potential limitations on maximum number of applications or amount of active ingredient allowed per season. Do not use when there is a phosphate deficiency.

Rates of phosphite: experiment procedures (Byron)

- Cv. Desirable, 30 y old trees ~60 ft
- 5 applications in 2015 (24 April, 19 May, 19 June, 9 and 30 July)
- 6 applications in 2016 (27 April, 11 and 27 May, 21 June, 13 July and 10 August)
- Applied using a Durand-Wayland 3210
- 100 gallons per acre at 2 mph
- 4 replicate trees of each treatment, foliage and fruit sampled and assessed for scab, fruit weigh recorded
- Analyzed using a general linear model with Tukey’s means separation (α = 0.05)

<table>
<thead>
<tr>
<th>Fungicide a</th>
<th>Phosphonate salt</th>
<th>Proportion of phosphonate salts in product</th>
<th>Weight (Kg/L) of phosphorous acid</th>
<th>Recommended rate (label)</th>
<th>Rates applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0.0%</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ProPhyt®</td>
<td>Mono- and di- basic potassium</td>
<td>54.5% b</td>
<td>0.50</td>
<td>2.3-5.9</td>
<td>2.0-5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-phite® 7LP</td>
<td>Mono- and di-bas</td>
<td>56.0%</td>
<td>0.53</td>
<td>2.3-7.0</td>
<td>2.0-6.0</td>
</tr>
<tr>
<td></td>
<td>ic potassium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Manufacturers are as follows: K-phite® 7LP (Plant Food Systems, Zellwood, FL), ProPhyt® (Helena Chemical Company, Collierville, TN)
b Labelled high rate of Prophyt® is 5.9 L/ha (5.0 pints/acre).
Effect of rate of phosphites for scab control (Byron)

- Higher concentrations of phosphite reduce scab more on foliage
- In 2016, scab severity was low early in the season
- No phytotoxicity observed at 6 pnts/acre

Severity on leaflets (% area scabbed)

- In 2015 (28 July), scab severity was significantly different among treatments.
 - Control: a
 - ProPhyt® (2.00), ProPhyt® (3.00): ab
 - ProPhyt® (4.50), ProPhyt® (6.00), K-phite® 7LP (2.00), K-phite® 7LP (6.00): c

- In 2016 (30 June), scab severity was not significantly different among treatments.
 - Control: a
 - ProPhyt® (2.00), ProPhyt® (3.00), ProPhyt® (4.50), ProPhyt® (6.00), K-phite® 7LP (2.00), K-phite® 7LP (6.00): a

Different letters indicate means are significantly different ($\alpha = 0.05$)
Effect of rate of phosphites for scab control (Byron)

- Higher concentrations of phosphite reduce scab more on fruit
- In 2016, incidence of scab was lower early in the season

Immature fruit – incidence of scab (% fruit scabbed)

<table>
<thead>
<tr>
<th>Treatment and rate (pt/acre)</th>
<th>Scab incidence (% fruit infected)</th>
<th>Control (0)</th>
<th>ProPhyt® (2.00)</th>
<th>ProPhyt® (3.00)</th>
<th>ProPhyt® (4.50)</th>
<th>ProPhyt® (6.00)</th>
<th>K-phite® 7LP (2.00)</th>
<th>K-phite® 7LP (6.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scab incidence (% fruit infected)</td>
<td>2015 (28 July)</td>
<td>F = 6.2 (P<0.0007)</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>ab</td>
<td>ab</td>
</tr>
<tr>
<td>Scab incidence (% fruit infected)</td>
<td>2016 (30 June)</td>
<td>F = 10.3 (P<0.0001)</td>
<td>a</td>
<td>ab</td>
<td>bc</td>
<td>bc</td>
<td>ab</td>
<td>c</td>
</tr>
</tbody>
</table>

Different letters indicate means are significantly different (α = 0.05)
Effect of rate of phosphites for scab control (Byron)

Immature fruit – severity of scab (% area scabbed)

- Higher concentrations of phosphite reduce severity of scab more on fruit
- In 2016, scab severity was lower early in the season

2015 (28 July)

<table>
<thead>
<tr>
<th>Treatment and rate (pt/acre)</th>
<th>Scab severity (% fruit infected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (0)</td>
<td>a</td>
</tr>
<tr>
<td>ProPhyt® (2.00)</td>
<td>a</td>
</tr>
<tr>
<td>ProPhyt® (3.00)</td>
<td>b</td>
</tr>
<tr>
<td>ProPhyt® (4.50)</td>
<td>c</td>
</tr>
<tr>
<td>ProPhyt® (6.00)</td>
<td>c</td>
</tr>
<tr>
<td>K-phite® 7LP (2.00)</td>
<td>c</td>
</tr>
<tr>
<td>K-phite® 7LP (6.00)</td>
<td></td>
</tr>
</tbody>
</table>

\[F = 36.4 \text{ (P<0.0001)} \]

2016 (30 June)

<table>
<thead>
<tr>
<th>Treatment and rate (pt/acre)</th>
<th>Scab severity (% fruit infected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (0)</td>
<td>a</td>
</tr>
<tr>
<td>ProPhyt® (2.00)</td>
<td>bc</td>
</tr>
<tr>
<td>ProPhyt® (3.00)</td>
<td>bcd</td>
</tr>
<tr>
<td>ProPhyt® (4.50)</td>
<td>cd</td>
</tr>
<tr>
<td>ProPhyt® (6.00)</td>
<td>cd</td>
</tr>
<tr>
<td>K-phite® 7LP (2.00)</td>
<td>ab</td>
</tr>
<tr>
<td>K-phite® 7LP (6.00)</td>
<td>d</td>
</tr>
</tbody>
</table>

\[F = 12.4 \text{ (P<0.0001)} \]

Different letters indicate means are significantly different (\(\alpha = 0.05 \))
Effect of rate of phosphites for scab control (Byron)

Mature fruit – incidence of scab (% fruit scabbed)

- By mid-late August incidence was high in both years on all treatments

![Graph showing scab incidence](image)

2015 (18 August)

- F = 1.4 (P=0.3)

2016 (16 August)

- F = 0.9 (P=0.5)

Different letters indicate means are significantly different (α = 0.05)
Effect of rate of phosphites for scab control (Byron)

Mature fruit – severity of scab (% area scabbed)

- Higher concentrations of phosphite reduce severity of scab more on fruit
- In 2016, slightly lower scab severity on the control later in the season

![Graph showing scab severity](image)

Different letters indicate means are significantly different ($\alpha = 0.05$)
Rates of Phosphite: experiment procedures (Ty Ty)

- Cvs. Desirable and Wichita, individual terminals treated with hand pump sprayer
- Applications in 2017 (11 April, and every 14 +/- 1 day to 15 August)
- Applications in 2018 (13 April, and every 14 +/- 1 day to 17 August)
- Equivalent of 100 gpa
- Foliage and fruit sampled and assessed for scab (9 replicates for each treatment)
- Analyzed using a general linear model with Tukey’s means separation ($\alpha = 0.05$)

<table>
<thead>
<tr>
<th>Fungicide a</th>
<th>Phosphonate salt</th>
<th>Proportion of phosphonate salts in product</th>
<th>Weight (Kg/L) of phosphorous acid</th>
<th>Recommended rate (label) Liter/ha</th>
<th>Rates applied</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0.0%</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Rampart®</td>
<td>Mono- and di-basic potassium</td>
<td>53.0%</td>
<td>0.47</td>
<td>3.0-8.0</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.7</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

a Manufacturers are as follows: K-phite® 7LP (Plant Food Systems, Zellwood, FL), ProPhyt® (Helena Chemical Company, Collierville, TN)

b Labelled high rate of ProPhyt® is 5.9 L/ha (5.0 pints/acre).
Effect of rate of phosphites for scab control (Ty Ty)

Severity on leaves (% area scabbed)

- On both cvs severity was significantly reduced by higher rates of the phosphite product
- In some cases difference were numeric but the trend consistent
- No phytotoxicity observed at 6 pnts/acre

Scab severity (% leaf infected)

2017 (13 July)

- Control
- Rampart® (2.0)
- Rampart® (4.0)
- Rampart® (6.0)

2018 (18 July)

- Control
- Rampart® (2.0)
- Rampart® (4.0)
- Rampart® (6.0)

Yellow = Desirable (F = 2.7, P=0.07)
Green = Wichita (F = 8.7, P = 0.0002)

Different letters indicate means are significantly different (∝ = 0.05)
Effect of rate of phosphites for scab control (Ty Ty)

Mature fruit – incidence of scab (% fruit scabbed)

- Incidence of scabbed fruit was high on both cvs. There was no significant difference among rates of phosphite product.
Effect of rate of phosphites for scab control (Ty Ty)

Mature fruit – severity of scab (% area scabbed)

Most often there was significantly or numerically less severe scab on fruit of trees sprayed with higher rates of phosphite product

2017 (26 August)

Yellow = Desirable (F = 13.2, P<0.0001)
Green = Wichita (F = 12.5, P<0.0001)

2018 (31 August)

Yellow = Desirable (F =32.5, P<0.0001)
Green = Wichita (F = 812.4, P< 0.0001)

Different letters indicate means are significantly different (α = 0.05)
Residues, MRLs, EU rulings and other nut crops in relation to pecan

- Phosphite has VERY low animal toxicity
- In 2013 the EU changed the designation of phosphites as both fertilizer and pesticide to only pesticide, thus defaulting phosphites to a 2 ppm MRL
- They provided a temporary MRL of 75 ppm to nut and other crops to 31 December 2015 to allow time for producer industries to respond
- In September 2015, the US tree nut industry submitted a package based on IR-4 phosphite residue testing (which did not include pecan data, but pecan was a stated nut in the documentation) for the EU to determine a final import tolerance to replace the temporary MRL
- A permanent MRL was finally ratified on 5 June 2018 and set at 500 ppm
- Here in the Southeast, we use phosphite differently to pecan and other nut crops grown out West (from TX to CA)
- We need residue data for pecan to confirm it is within EU limits, and also determine how usage in the Southeast impacts residue
Exports of pecans to the EU

- Valuable export market
- Increasing in size as a market for pecans

Cvs. Pawnee and Caddo in 2016 and 2017

Two experiments: (i) spray timing, and (ii) spray number effects on residues

Applied using a Durand-Wayland 3210 (100 gallons per acre at 2 mph). Phosphites (ProPhyt®, Helena Chemical Company, Collierville, TN was applied at 3.51 L/ha (1.5 Q per acre). Contains 54.5% potassium phosphite, and has a phosphorous acid equivalent of 34.3% (equating to 503.3 g/L [4.2 lb/gallon]).

2-3 replicate trees of each treatment, foliage and fruit sampled

Phosphite residue in nutmeats analyzed using

Analyzed using a general linear model with Tukey’s means separation ($\alpha = 0.05$), and by regression analysis

Spray number experiments

<table>
<thead>
<tr>
<th>Year</th>
<th>Cultivar</th>
<th>No. of sprays</th>
<th>Spray dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>'Pawnee'</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(GB)</td>
<td>1</td>
<td>15 Jul</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>15 Jul, 15 Aug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>15 Jul, 28 Jul, 15 Aug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>15 Jul, 28 Jul, 15 Aug, 30 Aug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>15 Jul, 28 Jul, 15 Aug, 30 Aug, 9 Sep</td>
</tr>
<tr>
<td>2017</td>
<td>'Pawnee'</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(GB)</td>
<td>1</td>
<td>3 May</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3 May, 24 May</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3 May, 24 May, 5 Jun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3 May, 24 May, 5 Jun, 15 Jun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3 May, 24 May, 5 Jun, 15 Jun, 29 Jun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>3 May, 24 May, 5 Jun, 15 Jun, 29 Jun, 14 Jul</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>3 May, 24 May, 5 Jun, 15 Jun, 29 Jun, 14 Jul, 29 Jul</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>3 May, 24 May, 5 Jun, 15 Jun, 29 Jun, 14 Jul, 29 Jul, 15 Aug</td>
</tr>
</tbody>
</table>

Spray timing experiments

<table>
<thead>
<tr>
<th>Year</th>
<th>Cultivar</th>
<th>Spray date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>'Pawnee'</td>
<td>15 Jul</td>
</tr>
<tr>
<td></td>
<td>(GB)</td>
<td>28 Jul</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 Aug</td>
</tr>
<tr>
<td>2017</td>
<td>'Pawnee'</td>
<td>3 May</td>
</tr>
<tr>
<td></td>
<td>(GB)</td>
<td>5 Jun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 Jun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 Jul</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 Aug</td>
</tr>
</tbody>
</table>

Phosphites (%ProPhyt®, Helena Chemical Company, Collierville, TN was applied at 3.51 L/ha (1.5 Q per acre). Contains 54.5% potassium phosphite, and has a phosphorous acid equivalent of 34.3% (equating to 503.3 g/L [4.2 lb/gallon]).
Phosphite residues: spray timing

- In 2016 there was a small effect of the date of application of phosphite on nutmeat residue level (3.05 to 29.25 ppm)
- In 2017 there was no discernible effect of the date of application on phosphite on nutmeat residue level (0.9 to 24.67 ppm) – but there was a numeric trend for higher residue later.
Phosphite residues: number of sprays applied in season

- More sprays result in a higher residue in pecan nutmeats
- Most often there is tree to tree variability within a treatment. Might phosphite residue vary within a tree canopy?
- 3-5 sprays are recommended in GA spray guide. Highly unlikely this will lead to >500 ppm EU limit
- >6 sprays may lead to a risk, but probably up to 7 are safe at 1.5 Q (3 pints/acre)

![Phosphite Residue Chart](chart.png)

Different letters indicate means are significantly different ($\alpha = 0.05$)
There was a linear relationship between number of phosphite applications in a season and the final residue level.

A few individual samples from trees exceeded 500 ppm.

Depending on season, we determined ~17 to ~58 ppm/spray application.

UGA recommendations are for 5 or fewer sprays per season—well within the safety limit.

But we do not know about season to season build up, or the effect of rate.

Graphs:

- **Pawnee, 2016**
 \[
 y = 17.1x - 4.6 \\
 R^2 = 0.95
 \]

- **Caddo, 2017**
 \[
 y = 30.4x + 22.3 \\
 R^2 = 0.56
 \]

- **Pawnee, 2017**
 \[
 y = 57.7x - 60.3 \\
 R^2 = 0.62
 \]
Finally, what does the season hold for weather?

- April-May-June 2019
- Probability to be hotter for the first three months of the season (and beyond)
- Some probability of being slightly wetter early in the season
- So scab is likely to be at least average in intensity

https://www.cpc.ncep.noaa.gov/products/predictions/long_range/
Summary

- Phosphites are a valuable chemistry in our toolbox against scab
- Phosphites at higher rates are efficacious on leaves and fruit
- We have robust data on 6 pnts/acre
- No phytotoxicity at 6 pnts/acre
- Phosphite residues may be an issue in pecan if >7 sprays are applied (effects of rate and season carry-over have not been established)
- In 2019 we should be prepared for at least an average scab year
Acknowledgements

- Thanks to the pathology team at the USDA-ARS-SEFTNRL:
 - Dr. Mike Hotchkiss
 - Minling Zhang
 - Wanda Evans
 -and many short-term employees who have worked with the group (Jason Shipp, Sue Burrell, Sarah Morril, Andrew Hudgens and Kaylee Carlson), and Dr. Bruce Wood

- The University of Georgia appreciates the input of Kory Herrington who managed the trials at Ty Ty

- The research was supported by funding from:
 - USDA-ARS CRIS project 6606-21220-012–00D
 - The Georgia Agriculture Commodity Commission for Pecans
 - The American Pecan Council

Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U. S. Dept. of Agriculture and does not imply its approval to the exclusion of other products or vendors that also may be suitable.
Thank you

Questions?