

Proteomic Analysis of Developing Pecan Nuts

Kristen Clermont Mattison Lab, USDA

Why study proteins?

Nutritional value

Total pecan nut protein content can vary by about 30%.

- Why variation?
- Are specific proteins more variable than others?

Allergy induction

Tree nut allergies triggered by storage proteins:

- Car i 1
- Car i 2
- Car i 4

Tree's molecular toolkit

Specific proteins are molecular tools used to make other compounds in the nut:

- Oil levels, saturated vs. unsaturated oils
- Sugar metabolism

Proteomics:

Broad look at the range of proteins expressed at once in one system (eg. a single developmental stage of pecan nut)

Samples from LSU Pecan Research and Extension Station

Pecan nut development

RNA-Seq Analysis of Developing Pecan (Carya illinoinensis) Embryos Reveals Parallel Expression Patterns among Allergen and Lipid Metabolism Genes. Mattison CP, Rai R, Settlage RE, Hinchliffe DJ, Madison C, Bland JM, Brashear S, Graham CJ, Tarver MR, Florane C, Bechtel PJ. J Agric Food Chem. 2017

Range of proteins in nut broadens in September

Aug 11

Aug 23

Aug 29

Sep 10

Protein identification using Mass Spec

Protein identification using Mass Spec

Masses detected

Protein Mass Spec Result Allergen: Car i 2

1	MVTKAKIPLF	LFLSALFLAL	VCSSLALETE	DLSNELNPHH	DPESHR WEFQ
51	QCQER CQHEE	RGQRQAQQCQ	RRCEEQLRER	ERER EREEIV	DPR EPRKQYE
101	QCRETCEKQD	PRQQPQCERR	CER QFQEQQE	R ERRERRRGR	DDDDKENPRD
151	PREQYRQCEE	HCRRQGQGQR	QQQQCQSRCE	ERLEEEQRKQ	EERERRRGRD
201	EDDQNPRDPE	QRYEQCQQQC	ERQRR <mark>GQEQQ</mark>	LCRRRCEQQR	QQEERERQRG
251	RDR QDPQQQY	HRCQRRCQTQ	EQSPERQRQC	QQRCERQYKE	QQGREWGPDQ
301	ASPRRESRGR	EEEQQR HNPY	YFHSQGLRSR	HESGEGEVKY	LERFTERTEL
351	LRGIENYR VV	ILEANPNTFV	LPYHKDAESV	IVVTRGRATL	TFVSQERRES
401	FNLEYGDVIR	VPAGATEYVI	NQDSNER LEM	VKLLQPVNNP	GQFREYYAAG
451	AQSTESYLRV	FSNDILVAAL	NTPRDRLERF	FDQQEQR EGV	IIRASQEKLR
501	ALSQHAMSAG	QRPWGRR <mark>SSG</mark>	GPISLK SQR S	SYSNQFGQFF	EACPEEHRQL
551	QEMDVLVNYA	EIKRGAMMVP	HYNSKATVVV	YVVEGTGRFE	MACPHDVSSQ
601	SYEYK GRREQ	EEEESSTGQF	QKVTARLAR <mark>G</mark>	DIFVIPAGHP	IAITASQNEN
651	LRLVGFGING	KNNQR <mark>NFLAG</mark>	QNNIINQLER	Eak elsfnmp	REEIEEIFER
701	QVESYFVPME	RQSRRGQGRD	HPLASILDFA	GFF	

Red designates detected peptides

Ratios of specific proteins change during development

Aug 11

Aug 23

Sep 10

Oct 2

Sucrose binding protein

Glyceraldehyde -3phosphate dehydrogenase

Protein Mass Spec Result

Glyceraldehyde-3-phosphate dehydrogenase

1	MASDKKIKIG	INGFGRIGRL	VARVVLQRND	VELVAVNDPF	INTDYMTYMF
51	KYDTVHGHWK	HHDIKVK <mark>DSN</mark>	TLLFGEKAVT	VFGVR NPEEI	PWGQTGAEYI
101	VESTGVFTDK	EKAAAHLKGG	AKKVIISAPS	KDAPMFVVGV	NEK EYKPELD
151	IISNASCTTN	CLAPLAKVIN	DNFGIVEGLM	TTVHSITATQ	KTVDGPSSKD
201	WRGGR AASFN	IIPSSTGAAK	AVGKVLPSLN	GKLTGMAFRV	PTVDVSVVDL
251	TVRLQKKATY	EEIKKAIKVA	SEGKLKGILG	YTEDDVVSSD	FVGDNRSSIF
301	DAKAGIALND	NFVKLVSWYD	NEWGYSTRVV	DLIVHIASVH	A

Protein identification using Mass Spec

Identified 60 hits so far

Testing parameters to get more information out of whole protein extracts

Aug 11

Aug 23

Aug 29

Sep 10

Proteins Identified

Glutaredoxin
Glutaredoxin-C1
Glyceraldehyde-3-phosphate dehydrogenase, cytosolic
Glycine-rich protein 2
IAA-amino acid hydrolase ILR1
Legumin B
Malate dehydrogenase, chloroplastic
Malate dehydrogenase, cytoplasmic
Malate dehydrogenase, mitochondrial
NADP-dependent alkenal double bond reductase P1
Non-specific lipid-transfer protein
Peroxygenase 1
Phosphoglucomutase, cytoplasmic
Phosphoglycerate kinase, cytosolic
Probable fructose-bisphosphate aldolase 3, chloroplastic
Probable nucleoredoxin 1
Protein disulfide-isomerase
Putative lactoylglutathione lyase
Pyruvate kinase, cytosolic isozyme
RuBisCO large subunit-binding protein subunit beta,
Sucrose-binding protein
Superoxide dismutase [Cu-Zn] 4A
Superoxide dismutase [Mn], mitochondrial
Thiamine thiazole synthase, chloroplastic
Translationally-controlled tumor protein homolog
Tubulin alpha chain
Universal stress protein A-like protein
Vicilin-like antimicrobial peptides 2-2

11S globulin seed storage protein 2 13S globulin basic chain 14-3-3-like protein D 18 kDa seed maturation protein 2S albumin 40S ribosomal protein S20-1 40S ribosomal protein S28 5-methyltetrahydropteroyltriglutamate--homocysteine 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase 60S ribosomal protein L12 60S ribosomal protein L4 Acyl carrier protein 1, chloroplastic Calreticulin Chaperone protein YajL Chaperonin 60 subunit beta 2, chloroplastic Cinnamoyl-CoA reductase 1 Cyclic phosphodiesterase DDT domain-containing protein DDB G0282237 Dihydrolipoyl dehydrogenase Elongation factor 1-alpha Embryonic protein DC-8 Enolase Enolase 1 Enoyl-[acyl-carrier-protein] reductase [NADH], chloroplastic Formate dehydrogenase, mitochondrial Fructokinase-2 Fructose-bisphosphate aldolase cytoplasmic isozyme Glucose and ribitol dehydrogenase homolog 1

Roasted pecans

Soluble proteins

What changes happen to pecan proteins during roasting?

Protein modifications caused by roasting

- Protein modification is the attachment of a molecule onto a protein after it is formed
- Protein modifications seen in heated cashew nuts
- Application for roasted pecan, and pecan nut development

Identification and Characterization of Ana o 3 Modifications on Arginine-111 Residue in Heated Cashew Nuts. Mattison CP, Grimm CC, Li Y, Chial HJ, McCaslin DR, CSU, Bren-Mattison Y, Wasserman RL. J Agric Food Chem. 2017

Summary of the findings presented

What's in the pecan nut?

- Relative abundance of several proteins changes during development
- Relative abundance of proteins changes during heating
- Identification of these proteins via mass spec
 - Eg. Car i 4 seed storage and allergen
 - Eg. Glyceraldehyde-3-phosphate dehydrogenase metabolism enzyme
- Baseline of normal protein content, from which to identify variations

Future directions

Using list and ratios of proteins seen as a baseline

Identify differences from the baseline under:

- Abiotic stress: Water, salt
- Biotic stress: Scab, stinkbugs
- Variations in allergen content

Interested in analyzing...

- Nuts aborted during development
- Nuts from disease damaged trees
 - Eg. Scab and stinkbugs
- Stressed growing conditions
 - Eg. Salt tolerance, waterlogged
- Nuts from alternate bearing trees from year to year

Potential applications

Identify protein and genetic targets

Incorporate proteins associated with important processes in the pecan nut into genetic breeding strategies

- Enable the development of new cultivars with improved sensory and nutritional quality
- Improve disease and stress tolerance
- Reduced allergen content

Thank you

Southeastern Pecan Growers Association

Chris Mattison, USDA Charlie Graham, Noble Foundation Casey Grimm, USDA Steven W. Lloyd, USDA

Funding: USDA

This publication (or project) was supported by the Specialty Crop Block Grant Program at the U.S. Department of Agriculture through grant agreement number 12-25-B-1464. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the USDA.